The natural number 270 as a set
For natural numbers, the
Von Neumann definition
is usually used: A natural number N then is the set of all lower natural
numbers, with 0 being the empty set.
N1 < N2 is defined as
N1 ∈ N2 .
N + 1 is defined as N ∪ { N }.
N + 0 is defined as N.
N1 + (N2 + 1) is defined as
(N1 + N2 ) + 1.
270 = {
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
48
,
49
,
50
,
51
,
52
,
53
,
54
,
55
,
56
,
57
,
58
,
59
,
60
,
61
,
62
,
63
,
64
,
65
,
66
,
67
,
68
,
69
,
70
,
71
,
72
,
73
,
74
,
75
,
76
,
77
,
78
,
79
,
80
,
81
,
82
,
83
,
84
,
85
,
86
,
87
,
88
,
89
,
90
,
91
,
92
,
93
,
94
,
95
,
96
,
97
,
98
,
99
,
100
,
101
,
102
,
103
,
104
,
105
,
106
,
107
,
108
,
109
,
110
,
111
,
112
,
113
,
114
,
115
,
116
,
117
,
118
,
119
,
120
,
121
,
122
,
123
,
124
,
125
,
126
,
127
,
128
,
129
,
130
,
131
,
132
,
133
,
134
,
135
,
136
,
137
,
138
,
139
,
140
,
141
,
142
,
143
,
144
,
145
,
146
,
147
,
148
,
149
,
150
,
151
,
152
,
153
,
154
,
155
,
156
,
157
,
158
,
159
,
160
,
161
,
162
,
163
,
164
,
165
,
166
,
167
,
168
,
169
,
170
,
171
,
172
,
173
,
174
,
175
,
176
,
177
,
178
,
179
,
180
,
181
,
182
,
183
,
184
,
185
,
186
,
187
,
188
,
189
,
190
,
191
,
192
,
193
,
194
,
195
,
196
,
197
,
198
,
199
,
200
,
201
,
202
,
203
,
204
,
205
,
206
,
207
,
208
,
209
,
210
,
211
,
212
,
213
,
214
,
215
,
216
,
217
,
218
,
219
,
220
,
221
,
222
,
223
,
224
,
225
,
226
,
227
,
228
,
229
,
230
,
231
,
232
,
233
,
234
,
235
,
236
,
237
,
238
,
239
,
240
,
241
,
242
,
243
,
244
,
245
,
246
,
247
,
248
,
249
,
250
,
251
,
252
,
253
,
254
,
255
,
256
,
257
,
258
,
259
,
260
,
261
,
262
,
263
,
264
,
265
,
266
,
267
,
268
,
269
}
See also 270 in Linked Open Numbers
(back to √2)